Monday, 3 June 2013

8 POINT DCT

module dct1(sel,y);
  input [2:0]sel;
  output reg [15:0]y; 
  wire [15:0]y0,y1,y2,y3,y4,y5,y6,y7;
  wire [7:0]p0,p1,p2,p3,p10,p11,p100,m0,m1,m2,m3,m10,m11,m100;
  wire [15:0]n0,n1,n2,n3,q0,q1,q2,q3;
  wire [7:0]x0,x1,x2,x3,x4,x5,x6,x7;

parameter c1=8'b11111011;
parameter c2=8'b11101100;
parameter c3=8'b11010100;
parameter c4=8'b10110101;
parameter c5=8'b10001110;
parameter c6=8'b01100001;
parameter c7=8'b00110001;

assign x0=8'b10110;
assign x1=8'b1001;
assign x2=8'b101;
assign x3=8'b1111;
assign x4=8'b1011;
assign x5=8'b10;
assign x6=8'b100;
assign x7=8'b10010;
//stage1
bfly1 s11(x0,x7,p0,m0);
bfly1 s12(x3,x4,p1,m1);
bfly1 s13(x1,x6,p2,m2); 
bfly1 s14(x2,x5,p3,m3);
//stage2
bfly2 s21(m0,m1,c1,c7,n0,q0); 
bfly2 s22(m2,m3,c3,c5,n1,q1);
bfly2 s23(m0,m1,c5,c3,n2,q2);
bfly2 s24(m2,m3,c7,c1,n3,q3);
bfly1 s15(p0,p1,p10,m10);
bfly1 s16(p2,p3,p11,m11);
//stage3
bfly2 s31(m10,m11,c2,c6,y2,y6);
bfly1 s32(p10,p11,p100,m100);

assign y1=n0+n1;
assign y7=q0+(~q1+1);
assign y5=n2+(~q3+1);
assign y3=q2+(~n3+1);
assign y0=p100*c4;
assign y4=m100*c4;

always@(sel)
case(sel)
  0:begin y=y0; end
  1:begin y=y1; end
  2:begin y=y2; end
  3:begin y=y3; end
  4:begin y=y4; end
  5:begin y=y5; end
  6:begin y=y6; end
  7:begin y=y7; end
endcase
 endmodule

module bfly1(x,y,p,m);
  input [7:0]x,y;
  output[7:0]p,m;
  assign p=x+y;
  assign m=x+(~y+1);
  endmodule

module bfly2(x,y,cx,cy,sx,sy);
  input [7:0]x,y,cx,cy;
  output [15:0]sx,sy;
   assign sx=(x*cx)+(y*cy);
  assign sy=(x*cy)+(~(y*cx)+1);
endmodule


MULTIRATE PROCESSING TECHNIQUE(BPSK,QPSK,QAM)

 //Main module for Multirate Processing
module multi(in,q,out,clk);
input [7:0]in;
input q;
output clk;
output [15:0]out;
wire clk;
wire [15:0]out1,out2,out3;
wire clk1,clk2;
bpsk q1(in,clk,out1);
qpsk q2(in,clk1,out2);
qamp q3(in,clk2,out3);
dff q4(clk,clk1);
dff q6(clk1,clk2);
div q5(q,rst,clk);
assign out=out3;
endmodule

//Sub Module for BPSK
module bpsk(in,clk,out);
input [7:0]in;
input clk;
output [15:0]out;
reg [7:0]ar,ai;
reg [2:0]cn;
reg [7:0]pr;
reg s;
parameter ap=8'b10110100;//positive .707
parameter an=8'b01001100;//negative -.707
represent in 2's complement
initial
begin
cn=3'b000;
pr=in;
end
always@(posedge clk)
begin
case(cn)
0 : begin
s=in[0];
cn=3'b001;
end
1 : begin
s=in[1];
cn=3'b010;
end
2 : begin
s=in[2];
cn=3'b011;
end
3 : begin
s=in[3];
cn=3'b100;
end
4 : begin
s=in[4];
cn=3'b101;
end
5 : begin
s=in[5];
cn=3'b110;
end
6 : begin
s=in[6];
cn=3'b111;
end
7 : begin
s=in[7];
if(pr!=in)
begin
cn=3'b000;
pr=in;
end
end
endcase
case(s)
0 : begin
ar=ap;
ai=ap;
end
1 : begin
ar=an;
ai=ap;
end
endcase
end
assign out={ar,ai};
endmodule

//Sub module for QPSK
module qpsk(in,clk,out);
input [7:0]in;
input clk;
output [15:0]out;
reg  [7:0]ar,ai;
reg [1:0]cn,s;
reg [7:0]pr;
parameter ap=8'b10110100;//positive .707
parameter an=8'b01001100;//negative -.707
represent in 2's complement
initial
begin
cn=2'b0;
pr=in;
end
always@(posedge clk)
begin
case(cn)
0 : begin
s=in[1:0];
cn=2'b01;
end
1 : begin
s=in[3:2];
cn=2'b10;
end
2 : begin
s=in[5:4];
cn=2'b11;
end
3 : begin
s=in[7:6];
if(pr!=in)
begin
cn=2'b0;
pr=in;
end
end
endcase
case(s)
0 : begin
ar=ap;
ai=ap;
end
1 : begin
ar=ap;
ai=an;
end
2 : begin
ar=an;
ai=ap;
end
3 : begin
ar=an;
ai=an;
end
endcase
end
assign out={ar,ai};
endmodule

//Sub module for 16-QAM
module qamp(in,clk,out);
parameter ap=8’b01010000;
parameter an=8’b10110000;
parameter bp=8’b11110010;
parameter bn=8’b00001110;
input [7:0]in;
input clk;
output [15:0]out;
reg [7:0]i,q,pr;
reg [3:0]s;
reg cn;
initial
begin
cn=0;
pr=in;
end
always@(posedge clk)
begin
case(cn)
0 : begin
s=in[3:0];
cn=1;
end
1 : begin
s=in[7:4];
if(pr!=in)
begin
cn=0;
pr=in;
end
end
endcase
case(s)
0 : begin
i=ap;
q=ap;
end
1 : begin
i=ap;
q=bp;
end
2 : begin
i=bp;
q=ap;
end
3 : begin
i=bp;
q=bp;
end
4 : begin
i=ap;
q=an;
end
5 : begin
i=ap;
q=bn;
end
6: begin
i=bp;
q=an;
end
7 : begin
i=bp;
q=bn;
end
8 : begin
i=an;
q=ap;
end
9 : begin
i=an;
q=bp;
end
10 : begin
i=bn;
q=ap;
end
11 : begin
i=bn;
q=bp;
end
12 : begin
i=an;
q=an;
end
13 : begin
i=an;
q=bn;
end
14 : begin
i=bn;
q=an;
end
15 : begin
i=bn;
q=bn;
end
endcase
end
assign out={i,q};
endmodule

//Sub module Clock Divider
module div(clk,rst,q);
input clk,rst;
output q;
reg [27:0]sig;
always @(posedge clk)
begin
if(rst==1)
sig=28'b0;
else if (rst==0)
sig=sig+1;
end
assign q=sig[25];
endmodule
module dff(clk,clk1);
input clk;
output reg clk1;
initial
begin
clk1=1'b0;
end
always@(posedge clk)
begin
clk1=~clk1;
end
endmodule

Asynchronous Bus Transmitter and receiver

Transmitter
module trans(clk, TxD_start, TxD_data, bus,asynout, TxD_busy,BaudTick);
input clk, TxD_start;
input [7:0] TxD_data;
output bus,asynout,TxD_busy,BaudTick;
wire q;
div Baudgenerate(clk,q);
reg [3:0] state;
wire TxD_ready, TxD_busy;
reg [7:0] TxD_dataD;
reg muxbit;
reg [3:0] count;
wire BaudTick = count[3];
always @(posedge q) if(TxD_busy) count <= count[2:0]+1;
assign TxD_ready = (state==0);
assign TxD_busy = ~TxD_ready;
always @(posedge q)  if (TxD_ready & TxD_start) TxD_dataD = TxD_data;
always @(posedge q)
case(state)
                4'b0000: if(TxD_start) state <= 4'b0001;
                4'b0001: if(BaudTick) state <= 4'b0100;
                4'b0100: if(BaudTick) state <= 4'b1000;  // start
                4'b1000: if(BaudTick) state <= 4'b1001;  // bit 0
                4'b1001: if(BaudTick) state <= 4'b1010;  // bit 1
                4'b1010: if(BaudTick) state <= 4'b1011;  // bit 2
                4'b1011: if(BaudTick) state <= 4'b1100;  // bit 3
                4'b1100: if(BaudTick) state <= 4'b1101;  // bit 4
                4'b1101: if(BaudTick) state <= 4'b1110;  // bit 5
                4'b1110: if(BaudTick) state <= 4'b1111;  // bit 6
                4'b1111: if(BaudTick) state <= 4'b0010;  // bit 7
                4'b0010: if(BaudTick) state <= 4'b0011; // stop1
                4'b0011: if(BaudTick) state <= 4'b0000;  // stop2
                default: if(BaudTick) state <= 4'b0000;
endcase
always @(state[2:0])
case(state[2:0])
                3'd0: muxbit <= TxD_dataD[0];
                3'd1: muxbit <= TxD_dataD[1];
                3'd2: muxbit <= TxD_dataD[2];
                3'd3: muxbit <= TxD_dataD[3];
                3'd4: muxbit <= TxD_dataD[4];
                3'd5: muxbit <= TxD_dataD[5];
                3'd6: muxbit <= TxD_dataD[6];
                3'd7: muxbit <= TxD_dataD[7];
endcase
// Put together the start, data and stop bits
reg bus,asynout;
always @(posedge q)
begin
 bus <= (state<4) | (state[3] & muxbit);
asynout= (~(state[3]) && ~(state[2]) && ~(state[1]) && (state[0]));
end
endmodule
module div(clk,q);
input clk;
output q;
reg [27:0]sig;
always @(posedge clk)
begin
sig=sig+1;
end
assign q=sig[24];
endmodule

Receiver
module receive(clk, bus,asynin, RxD_data,RxD_ready,BaudTick);
input clk, bus,asynin;
output [7:0] RxD_data;
output RxD_ready,BaudTick;
wire q;
div Baudgenerate(clk,q);

reg [3:0] state;
wire RxD_ready,x;
wire bus;
reg st;

reg [3:0] baudcount;
wire BaudTick = baudcount[3];
always @(posedge q) if(state!=0) baudcount <= baudcount[2:0]+1;

initial begin state=0; st=0; baudcount=0; end

//identify start bit
always @(posedge q)
case(st)
 0: if(bus==0 && asynin==0 ) st=1; //when bus is idle, check for start identified
 1: if (state==4'b0011) st=0;//receive state
endcase

assign x= (st==0);
assign RxD_ready = ~x;



reg RxD_bit;
always @(posedge q)  if (asynin==0) RxD_bit = bus;

always @(posedge q)
case(state)
  4'b0000: if(RxD_ready) state <= 4'b0001;  // idle
  4'b0001: if(BaudTick) state <= 4'b1000;  // start bit
  4'b1000: if(BaudTick) state <= 4'b1001;  // bit 1
  4'b1001: if(BaudTick) state <= 4'b1010;  // bit 2
  4'b1010: if(BaudTick) state <= 4'b1011;  // bit 3
  4'b1011: if(BaudTick) state <= 4'b1100;  // bit 4
  4'b1100: if(BaudTick) state <= 4'b1101;  // bit 5
  4'b1101: if(BaudTick) state <= 4'b1110;  // bit 6
  4'b1110: if(BaudTick) state <= 4'b1111;  // bit 7
  4'b1111: if(BaudTick) state <= 4'b0010;  // bit 8
    4'b0010: if(BaudTick) state <= 4'b0011;  // stop1
  4'b0011: state <= 4'b0000;  // stop2
                default: state <= 4'b0000;
endcase

reg [7:0] RxD_data;
always @(posedge q)
if(BaudTick && state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]};

endmodule

module div(clk,q); // Sub module for clock division
input clk;
output q;
reg [27:0]sig;
always @(posedge clk)
begin
sig=sig+1;
end
assign q=sig[24];

endmodule